matrix n. (pl. matrices 或matrixes) 1.【解剖學(xué)】子宮;母體;發(fā)源地,策源地,搖籃;【生物學(xué)】襯質(zhì)細(xì)胞;間質(zhì);基質(zhì);母質(zhì)。 2. 【礦物】母巖;脈石;【冶金】基體;【地質(zhì)學(xué);地理學(xué)】脈石;填質(zhì);雜礦石。 3. 【印刷】字模;型版,紙型;鑄型,陰模。 4.【陣】(矩)陣,方陣;母式;【物理學(xué)】間架;【無(wú)線電】矩陣變換電路。 5.【染】原色〔紅黃藍(lán)白黑五種〕。 the matrix of a nail 【解剖學(xué)】指甲床。
matrix, the 駭客任務(wù),又名:二十二世紀(jì)殺人網(wǎng)絡(luò)或黑客帝國(guó)
Inverse problem of generalized eigenvalue for nonnegtive symmetric tridiagonal matrix 非負(fù)對(duì)稱三對(duì)角矩陣的廣義特征值反問(wèn)題
On the period symmetric tridiagonal matrix inverse problem of generalized eigenvalue 關(guān)于周期對(duì)稱三對(duì)角矩陣的廣義特征值反問(wèn)題
The article includes three parts mainly : the first part presents a new divide-and-conquer algorithm for the eigenvalue problem of symmetric tridiagonal matrices 文章主要包括三個(gè)部分:第一部分是利用改進(jìn)的分而治之算法計(jì)算對(duì)稱的三對(duì)角矩陣的特征值
The second part applies divide-and-conquer algorithm to calculate the eigenvalues of symmetrical matrices . the eigenvalues problem of symmetrical matrices ax = x can be transformed the eigenvalues problem of symmetric tridiagonal matrices tx = ux through householder transform . we divide t into t1, t2 and apply symmetrical qr algorithm to compute the eigenvalues of t1, t2 第二部分是利用分而治之算法計(jì)算對(duì)稱矩陣的特征值,對(duì)稱矩陣特征值問(wèn)題ax=x,通過(guò)householder變換,轉(zhuǎn)化為三對(duì)角對(duì)稱正定矩陣的特征值問(wèn)題ty=y,再將t分割成兩個(gè)子矩陣t_1,t_2,然后利用對(duì)稱qr方法分別求t_1,t_2的特征值
And in the second part, we consider the following four inverse eigenproblems : the reconstruction of normal five-diagonal matrix by two or three ordered eigenvalues and corresponding eigenvectors, and the reconstruction of real symmetric tridiagonal matrix and irreducible real symmetric tridiagonal matrix by three eigenvalues and corresponding eigenvectors, some sufficient conditions for existence of unique solution to the problems are given here, and some necessary and sufficient conditions for the existence of both unique solution and solution ( not unique ) to the latter are also given 第二個(gè)部分則討論四類矩陣逆特征值問(wèn)題:在考慮給定的兩個(gè)或三個(gè)特征值次序的情況下構(gòu)造唯一的規(guī)范五對(duì)角線矩陣:由三個(gè)給定的特征值和相應(yīng)特征向量來(lái)構(gòu)造唯一的實(shí)對(duì)稱三對(duì)角線矩陣和不可約實(shí)對(duì)稱三對(duì)角線矩陣。文章中給出了前者有唯一解的充分條件以及后者有唯一解和有解(不唯一)的充要條件,并且分別給出了其中唯一解的表達(dá)方式。
And in the second part, we consider the following four inverse eigenproblems : the reconstruction of normal five-diagonal matrix by two or three ordered eigenvalues and corresponding eigenvectors, and the reconstruction of real symmetric tridiagonal matrix and irreducible real symmetric tridiagonal matrix by three eigenvalues and corresponding eigenvectors, some sufficient conditions for existence of unique solution to the problems are given here, and some necessary and sufficient conditions for the existence of both unique solution and solution ( not unique ) to the latter are also given 第二個(gè)部分則討論四類矩陣逆特征值問(wèn)題:在考慮給定的兩個(gè)或三個(gè)特征值次序的情況下構(gòu)造唯一的規(guī)范五對(duì)角線矩陣:由三個(gè)給定的特征值和相應(yīng)特征向量來(lái)構(gòu)造唯一的實(shí)對(duì)稱三對(duì)角線矩陣和不可約實(shí)對(duì)稱三對(duì)角線矩陣。文章中給出了前者有唯一解的充分條件以及后者有唯一解和有解(不唯一)的充要條件,并且分別給出了其中唯一解的表達(dá)方式。